skip to main content


Search for: All records

Creators/Authors contains: "Omar, Hamza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the ever-increasing virtualization of software and hardware, the privacy of user-sensitive data is a fundamental concern in computation outsourcing. Secure processors enable a trusted execution environment to guarantee security properties based on the principles of isolation, sealing, and integrity. However, the shared hardware resources within the microarchitecture are increasingly being used by co-located adversarial software to create timing-based side-channel attacks. State-of-the-art secure processors implement the strong isolation primitive to enable non-interference for shared hardware, but suffer from frequent state purging and resource utilization overheads, leading to degraded performance. This paper proposes ASM , an adaptive secure multicore architecture that enables a reconfigurable, yet strongly isolated execution environment. For outsourced security-critical processes, the proposed security kernel and hardware extensions allow either a given process to execute using all available cores, or co-execute multiple processes on strongly isolated clusters of cores. This spatio-temporal execution environment is configured based on resource demands of processes, such that the secure processor mitigates state purging overheads and maximizes hardware resource utilization. 
    more » « less
  2. null (Ed.)
    Multicores increasingly deploy safety-critical parallel applications that demand resiliency against soft-errors to satisfy the safety standards. However, protection against these errors is challenging due to complex communication and data access protocols that aggressively share on-chip hardware resources. Research has explored various temporal and spatial redundancy-based resiliency schemes that provide multicores with high soft-error coverage. However, redundant execution incurs performance overheads due to interference effects induced by aggressive resource sharing. Moreover, these schemes require intrusive hardware modifications and fall short in providing efficient system availability guarantees. This article proposes PRISM, a resilient multicore architecture that incorporates strong hardware isolation to form redundant clusters of cores, ensuring a non-interference-based redundant execution environment. A soft error in one cluster does not effect the execution of the other cluster, resulting in high system availability. Implementing strong isolation for shared hardware resources, such as queues, caches, and networks requires logic for partitioning. However, it is less intrusive as complex hardware modifications to protocols, such as hardware cache coherence, are avoided. The PRISM approach is prototyped on a real Tilera Tile-Gx72 processor that enables primitives to implement the proposed cluster-level hardware resource isolation. The evaluation shows performance benefits from avoiding destructive hardware interference effects with redundant execution, while delivering superior system availability. 
    more » « less